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Abstract: We consider the problem of modeling and control of the nonlinear dynamics of a micro
manipulator, utilized for machining operations in combination with industrial robots. Position control
of the micro manipulator is a challenging problem because of the actuation principle, which is based
on piezo-actuators with inherent nonlinear behavior. The major nonlinearities in the manipulator are
identified and explicitly modeled in this paper. Different model structures are outlined and subsequent
identification experiments are performed and evaluated. The obtained models form the basis for a
combined feedforward and feedback control scheme for accurate position control. Experimental results
obtained with the developed control scheme are presented and discussed. We show that the accuracy of
the controller is increased significantly with the proposed scheme, compared to a linear controller.

1. INTRODUCTION

As a result of the increased demand on cost-efficiency and
flexibility in the manufacturing industry, industrial robots have
emerged during the past decade as an appealing alternative
to the dedicated machine-tools for performing high-accuracy
machining operations, such as milling and grinding. Because
of the significant process forces required during machining
operations, joint flexibilities in combination with lack of mea-
surements on the arm side of the robot, limit the achievable
accuracy (Zhang et al., 2005). Consequently, deviations from
the nominal path may occur during the machining operation.

To overcome the limitations of industrial robots when perform-
ing machining operations, a piezo-actuated micro manipulator
has previously been developed (Puzik et al., 2009). The purpose
of the developed micro manipulator is to compensate for path
deviations, which the robot per se is unable to compensate for.
The micro manipulator achieves this by stiff actuation, realized
by piezo-actuators, combined with a mechanical design such
that the bandwidth of the micro manipulator is significantly
higher than that of the industrial robot. Following the concepts
introduced by Sharon et al. (Sharon et al., 1993), the terms
micro manipulator and macro manipulator will be used for the
compensation mechanism and the robot, respectively.

We presented a prototype control scheme without explicit mod-
eling of the nonlinear behavior of the piezo-actuators in (Olof-
sson et al., 2011), and a subsequent experimental evaluation in
(Sörnmo et al., 2012). However, since the piezo-actuators in the
micro manipulator are inherently nonlinear in their input-output
dynamics, the performance of the control scheme, and hence
the machining performance, can be increased by modeling the
! The research leading to these results has received funding from the European
Union’s seventh framework program (FP7/2007-2013) under grant agreement
#258769 COMET and the Swedish Research Council through the LCCC
Linnaeus Center VR 2007-8646.

nonlinear dynamics and utilizing the models for feedforward
control in the control scheme.

The main contribution of this paper is the development and
application of a model-based control scheme for the nonlinear
dynamics of the micro manipulator, as well as an analysis
of the proposed feedforward controller based on describing
functions. Furthermore, an experimental verification showing
a significantly higher accuracy of the position control with the
proposed control scheme, compared to a linear controller based
on feedback, is presented.

This paper is organized as follows. In Sec. 2, the design of
the micro manipulator is briefly reviewed. The theory for the
nonlinear models of the piezo-actuators is given in Sec. 3,
whereas the identified models and the control scheme for the
nonlinear dynamics of the micro manipulator are presented in
Sec. 4. Experimental results are provided in Sec. 5, and finally
conclusions and aspects on future work are given in Sec. 6.

2. BACKGROUND

This section briefly reviews the mechanical design of the de-
veloped micro manipulator, which is displayed in Fig. 1. It is
to be noted that the machining spindle is attached to the micro
manipulator—i.e., the robot is holding the workpiece—in the
proposed experimental setup.

2.1 Mechanical design

The design of the micro manipulator is such that compensation
is possible in a three-dimensional Cartesian coordinate system
with axes x, y, and z, as shown in Fig. 1. Each axis is actuated
by a piezo-actuator. Further, flexure elements between the ac-
tuators and the end-effector increase the compensation range of
the micro manipulator. The gear ratio is approximately five in
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Fig. 1. Micro manipulator actuated by three piezo-actuators.
The Cartesian coordinate system in blue indicates the
actuation axes.
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Fig. 2. Characterization of hysteresis in the x-axis of the micro
manipulator in the case of a linear, alternatingly increasing
and decreasing input with changing amplitude.

each axis, which results in a maximum compensation range of
0.5 mm in each Cartesian direction.

The displacement of the machining spindle along each of
the axes is measured with a capacitive sensor, whereas the
extensions of the piezo-actuators are measured with strain
gauge sensors integrated into the actuators.

2.2 Nonlinear phenomena in the micro manipulator

During the initial dynamic characterization of the micro ma-
nipulator, it was noted that the nonlinear effects in the piezo-
actuators are significantly influencing the positioning accuracy.
The most apparent nonlinear dynamics were hysteresis and
creep effects. The characteristics of the former phenomenon
are shown in Fig. 2. The creep effect has been quantified for
the different axes to approximately 0.02 µm/s.

Consequently, modeling of the nonlinear hysteresis effect is
necessary in order to achieve accurate position control of the
micro manipulator. Since the creep phenomenon exhibits sig-
nificantly slower dynamics than the hysteresis, this effect can be
handled without explicit modeling. Instead, feedback from the
strain gauge sensors on the actuators is utilized. In particular,
integral feedback from the control error is considered.

3. THEORY

Several approaches to modeling the hysteresis effect have been
discussed in the literature. Three main categories of hysteresis
models can be identified; approaches based on the Preisach
model (Ge and Jouaneh, 1996; Lei et al., 2011), the Prandtl-
Ishlinskii model (Al Janaideh et al., 2009; Krejci and Kuhnen,
2001; Sun and Yang, 2009) and neural networks (Hastie et al.,
2008; Xu, 1993).

v

Gr [·]

r

Fig. 3. Play operator Gr[·] with symmetric threshold r.

In this paper, the focus will be on the Prandtl-Ishlinskii model
and the neural network approach. Hence, the theoretical foun-
dations of these approaches will be discussed next.

3.1 Prandtl-Ishlinskii model

The Prandtl-Ishlinskii model is based on the play operator Gr[·]
depicted in Fig. 3. Following (Brokate and Sprekels, 1996),
a continuous function v(t) ∈ C[0, T ], piecewise monotone in
each of the subintervals

[ti, ti+1] , 0 = t0 < t1 < . . . < tN = T (1)

is assumed as input. Hence, the play operator Gr[·] can in each
subinterval [ti, ti+1], i = 0, . . . , N − 1, be written as

Gr[v](t) = max(v(t) − r,min(v(t) + r,Gr[v](ti))) ,
ti < t ≤ ti+1 (2)

with the initial value

Gr [v](0) = max(v(0)− r,min(v(0) + r, 0)) (3)

Utilizing the definition of the play operator in (2), the Prandtl-
Ishlinskii operator H[v](t) can be written as a superposition of
play operators according to (Brokate and Sprekels, 1996)

H1[v](t) = αv(t) +

∫ R

0
ρ(r)Gr [v](t)dr (4)

where ρ(r) is a positive density function and α is a constant
parameter.

The generalized Prandtl-Ishlinskii operator (Al Janaideh et al.,
2009), is an extension of the standard Prandtl-Ishlinskii model
(4) in that the input v(t) is shaped with a continuous and strictly
increasing function ϕ(·). The generalized Prandtl-Ishlinskii
operator can be written as (Al Janaideh et al., 2009)

H2[v](t) = α(ϕ ◦ v)(t) +

∫ R

0
ρ(r)Gr [ϕ ◦ v](t)dr (5)

To the purpose of implementation, a finite-dimensional Prandtl-
Ishlinskii operator is established by discretization of the in-
tegral. This results in the finite-dimensional Prandtl-Ishlinskii
operator

yk = αϕ(vk) +
n
∑

i=1

ρ(ri)Ḡri [ϕ(vk)] (6)

where Y = {yk} and V = {vk} are considered as discrete
time-series and Ḡri [·] denotes the discretized play operator.

3.2 Inverse model based on Prandtl-Ishlinskii operator

The advantage of using the Prandtl-Ishlinskii operator for
modeling of the hysteresis is that the analytic inverse of the
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Fig. 4. Recurrent neural network with internal feedback from
the output yk. The neural network is to model the hystere-
sis of the piezo-actuators.

model (6) with a finite number of play operators exists. The
inverse is given by, e.g., (Al Janaideh et al., 2009),

vk = ϕ−1

(

1

α
yk +

n
∑

i=1

ρ̂(r̂i)Ḡr̂i [yk]

)

(7)

where

r̂i = αri +
i−1
∑

j=1

ρ(rj)(ri − rj) and (8)

ρ̂(r̂i) = −
ρ(ri)

(

α+
∑i

j=1 ρ(rj)
)(

α+
∑i−1

j=1 ρ(rj)
) (9)

It is to be noted that the shaping function ϕ(·) is invertible,
which follows from the assumptions on ϕ(·) to be continuous
and strictly monotone.

3.3 Neural network approach

Another approach to modeling the hysteresis phenomenon is
based on neural networks. In particular, neural networks with
internal feedback from the output, referred to as recurrent
neural networks, are of interest for modeling of the nonlinear
hysteresis effect, since they capture the inherent memory effect.

Consequently, consider the recurrent neural network in Fig. 4,
which has been used for modeling of hysteresis in, e.g., (Xu,
1993). Define a discrete-time neural network with input

Xk = [vk vk−1 yk−1]
T

, (10)

output Yk = yk, one hidden layer and M neurons, described at
time k by the relations

Zm = σ

(

(

w(1)
m

)T

Xk + b(1)m

)

, m = 1, . . . ,M (11)

Yk =
M
∑

m=1

w(2)
m Zm + b(2)m (12)

where w(1)
m ∈ R3, b(1)m , w(2)

m , b(2)m ∈ R, and the activation
function σ(v) = 1/(1 + exp(−v)). After training of the
network—i.e., identification of the model parameters—with
experimental input-output data, the network output represents
the hysteresis model output.

3.4 Inverse hysteresis model based on neural network

To the purpose of feedforward control based on the nonlinear
model of the hysteresis dynamics, a neural network can be
utilized to model the inverse relation as well. By interpreting
yk as the input and vk as the output, the inverse model can be
established based on the recurrent neural network in Fig. 4.

4. RESULTS

Hysteresis models were identified based on experimental input-
output data. Since it is desirable that the model represents
the hysteresis for different frequencies of the input signal, an
excitation signal containing frequencies in the range of interest
was chosen. Accordingly, the input signal

v(t) = v0 +
n
∑

i=1

ai sin(ωit) (13)

where v0 is an offset and ai and ωi, i = 1, . . . , n, are the
amplitudes and frequencies of the sinusoids, was applied to the
micro manipulator.

4.1 Models based on Prandtl-Ishlinskii operator

The model parameters were identified using nonlinear opti-
mization. Introduce the notation p for the set of parameters to
be identified. To the purpose of parameter identification, the
following quadratic cost function is considered

J(p) =
N
∑

i=1

(

yk − y(m)
k

)2
(14)

where y1, . . . , yN is the identification data and y(m)
1 , . . . , y(m)

N
is the corresponding model output. With the threshold values
ri parametrized in the parameter β according to ri = βi with
β > 0, and the density function ρ(r) = γ exp(−δr) with
γ, δ > 0, several different models with n play operators were
identified. In particular, the choice of the shaping function ϕ(·)
is of importance in order to obtain good correspondence be-
tween experimental data and the model. The following shaping
functions common in the literature were considered

ϕ1(v) = c1v + c2 (15)

ϕ2(v) = c3 tanh(c4v + c5) + c6 (16)

where ci, i = 1, . . . , 6, are model parameters to be identified.
The selection criterion for the shaping function was the final
cost J(p∗), where p∗ is the vector of optimal parameter values.

The output from the identified model of the hysteresis nonlin-
earity in the x-axis of the micro manipulator, with the shaping
function ϕ2(v) in Eq. (16) and n = 6, is compared to the
measurements from the experimental setup in Fig. 5. It is to
be noted that the model exhibits a good fit to the experimental
data and that the input-output relation for the input signal of
choice is satisfactory. The corresponding models for the y- and
z-axes are similar, and are therefore not presented here.

4.2 Models based on recurrent neural network

Hysteresis models based on the recurrent neural network were
trained using the cost function in Eq. (14) and with stochastic

initialization of the model parameters {b(1)m , b(2)m , w(1)
m , w(2)

m },
based on a normal distribution. A model for the x-axis nonlin-
earity with M = 25 neurons was found to result in similar per-
formance as the previous Prandtl-Ishlinskii model. The model
details are omitted here because of the limited space. Further, a
neural network was trained for the inverse of the nonlinearity,
which can be utilized to the purpose of feedforward control.

4.3 Scheme for position control

The control scheme depicted in Fig. 6 is proposed. In this
scheme, each of the Cartesian axes of the micro manipulator is
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Fig. 5. Model based on Prandtl-Ishlinskii operator with output
as function of time (upper panel) and output as function of
input (lower panel).

considered separately—i.e., possible cross couplings between
the axes are neglected.

4.4 Inner control scheme for piezo-actuators

Based on the inverse of the previously identified models of the
hysteresis nonlinearity in the micro manipulator, a combined
feedforward and feedback control scheme is proposed. A feed-
forward controller alone is not sufficient, since unmodeled dy-
namics and parameter variations will degrade the performance
significantly. Consequently, feedback from the strain gauge
sensors attached to the piezo-actuators is necessary.

The feedforward controller is based on the inverse of the
hysteresis nonlinearity in the micro manipulator. The inverse
model is established for each Cartesian axis as described in
Sec. 3; either from the model based on the Prandtl-Ishlinskii
operator or training a neural network for the inverse function
directly.

The feedback controller is chosen as a PID controller, whose
control law is given by

u(t) = K

[

e(t) +
1

Ti

∫ t

0
e(τ)dτ + Td

de(t)

dt

]

(17)

where u(t) is the control signal, e(t) the control error, and K ,
Ti, and Td are controller parameters. The D-part is essential,
since it contributes with phase advance in the system. Further-
more, the D-part is lowpass-filtered in order to avoid amplifica-
tion of high-frequency noise and the I-part is accompanied by
an anti-windup scheme. The parameters of the PID controller
should be chosen such that the gain is maximized, without
causing instability of the closed-loop system, in order to reduce
the effects of the nonlinearities in the piezo-actuators.

4.5 Outer control loop for micro manipulator position

With the inner piezo-actuator control loops closed, the lin-
ear dynamics of the micro manipulator is identified using
subspace-based identification methods (Johansson, 1993). The
position is controlled by a model-based linear-quadratic Gaus-
sian (LQG) optimal controller (Åström and Wittenmark, 1997),
where the states in the model of the linear dynamics are esti-
mated using a Kalman filter. For further details regarding this
controller, the reader is referred to (Olofsson et al., 2011).

4.6 Describing function analysis of the feedforward controller

In order to analyze the properties of the feedforward control
based on the Prandtl-Ishlinskii operator, describing function
analysis, see, e.g., (Slotine and Li, 1991), is utilized. The de-
scribing function analysis is based on a Fourier series expansion
of the output from the nonlinear model, with a sinusoidal input.
Even though this is an approximate analysis in the frequency
domain, it gives valuable information about the global behavior
of the feedforward controller. The analysis can further be mo-
tivated by considering the fact that the linear dynamics of the
micro manipulator is of lowpass character.

Consider the finite-dimensional inverse Prandtl-Ishlinskii model
in (7). Further, assume continuous-time input and output. With
the input y(t) = y0 + A sin(ωt), the first terms in the Fourier
series expansion of the output are given by

v0 =
1

2π

∫ 2π

0
f(y(t))d(ωt) (18)

a1 =
1

π

∫ 2π

0
f(y(t)) sin(ωt)d(ωt) (19)

b1 =
1

π

∫ 2π

0
f(y(t)) cos(ωt)d(ωt) , (20)

where f(·) is the inverse hysteresis model mapping. The de-
scribing function N(A) is defined based on the a1 and b1
coefficients as

N(A) =
a1 + ib1

A
(21)

Introduce θi = π − arcsin(1− (2r̂i)/A) and

Γi =

{

1 , if A > r̂i
0 , otherwise

(22)

Assume that the shaping function ϕ(v) = 1 and y0 = 0. It is
straightforward to verify that v0 = 0. The a1 coefficient can,
after simplification, be written as

a1
A

=
1

α
+

1

π

n
∑

i=1

ρ̂(r̂i)Γi

{

3π

2
+

1

2
sin(2θi)

+ 2

(

2r̂i
A

− 1

)

cos(θi)− θi

}

(23)

A similar calculation for the b1 coefficient gives

b1
A

=
1

π

n
∑

i=1

ρ̂(r̂i)Γi

{

−
3

2
+

1

2
cos(2θi)

+ 2

(

1−
2r̂i
A

)

sin(θi)

}

(24)

Hence, the quantity |N(A)| =
√

a21 + b21/A can be utilized as
a measure of the amplitude-dependent gain.

The analysis can be extended to the case whenϕ(·) is a different
function than the unity mapping and y0 %= 0. However, if the
complexity of the shaping function is increased, calculation
of the required integrals has to be performed using numerical
quadrature. The describing function analysis is performed for
the model presented in Fig. 5 with the shaping function ϕ2(v)
in Eq. (16), whereby the offset and gain shown in Fig. 7 are
obtained. In this analysis, the offset in the input signal has been
chosen to y0 = 70, which is in the middle of the working range
of the piezo-actuators in the micro manipulator.

It is to be noted that no singularities are visible in the describing
function within the amplitude range of interest, which is defined
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by the working range of the micro manipulator. Hence, the de-
scribing function analysis indicates stability of the feedforward
control scheme based on the inverse Prandtl-Ishlinskii model.

5. EXPERIMENTAL RESULTS

To the purpose of experimental verification, the feedforward
controller based on the Prandtl-Ishlinskii operator, was imple-
mented and tested on the experimental setup.

5.1 Experimental setup

The micro manipulator was interfaced via a dSPACE DS1103
system, where the sensor signals were read and the actuator
signals were written. The control scheme was implemented in
MATLAB Simulink, and then translated to C-code and com-
piled. The controller was installed in the dSPACE system and
executed at a sampling frequency of 10 kHz.

5.2 Experimental verification of control scheme

The x-axis of the micro manipulator was chosen for evaluation
of the proposed control scheme for the piezo-actuators. The
results for the other axes are similar, and are therefore not
presented here. The reference signals were of the format

v(t) = v0 +A sin(2πft) (25)
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Fig. 8. Experimental control error for PID controller (blue),
Prandtl-Ishlinskii model with affine shaping function (red)
and Prandtl-Ishlinskii model with tanh shaping function
(green), all with sinusoidal reference signal with frequen-
cies 5 Hz (upper panel) and 10 Hz (lower panel).

where the frequency f was chosen to 1, 5, and 10 Hz based
on the frequency range of interest for the application. The
amplitude and offset, measured on the actuator side, were
chosen to A = 30 µm and v0 = 70 µm, respectively, which
means that the major part of the working range of the actuator
is covered. The evaluation was performed with the following
configurations of the position controller for the piezo-actuator

A. Pure feedback control using PID control.
B. PID controller combined with feedforward control based on

the Prandtl-Ishlinskii model with the affine shaping function
ϕ1(·) in Eq. (15).

C. PID controller combined with Prandtl-Ishlinskii model with
tanh shaping function ϕ2(·) in Eq. (16).

Further, for reasons of comparability, the tuning of the PID
controller was identical in the different configurations. As a
measure of the control accuracy, the control error was consid-
ered. The control errors for the experiments performed on the
setup, with the controller configurations and reference signals
discussed in the previous paragraph, are displayed in Fig. 8.
The corresponding input-output behavior is displayed in Fig. 9.
Furthermore, the maximum error em as well as the standard
deviation σe of the control error are shown in Table 1 for the
different reference signals.
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(blue), Prandtl-Ishlinskii model with affine shaping func-
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Table 1. Maximum error em and standard deviation
σe of control error.

Maximum error em [µm]

Configuration

Input freq. [Hz] A B C

1 0.829 0.505 0.525
5 2.65 0.823 0.739

10 4.68 0.592 0.590

Standard deviation σe [µm]

Configuration

Input freq. [Hz] A B C

1 0.174 0.0632 0.0629

5 0.835 0.125 0.106
10 1.63 0.131 0.118

6. CONCLUSIONS AND FUTURE WORK

This paper has considered the problem of increasing the po-
sitioning accuracy of a piezo-actuated micro manipulator for
industrial robots by utilizing model-based nonlinear control.
Explicit nonlinear models of the major nonlinearity in the
manipulator—i.e., the hysteresis phenomenon—were identified
based on experimental data. Two model categories were consid-
ered; models based on the Prandtl-Ishlinskii operator and mod-
els based on recurrent neural networks. A subsequent control
scheme was proposed, where the properties of the feedforward
controller was analyzed using describing functions.

In an experimental verification, the identified models were uti-
lized in a control scheme combining feedforward and feedback.
Experimental results showed that the proposed control scheme
for position control of the micro manipulator increases the
accuracy significantly for reference signals with different fre-
quencies, compared to a linear controller. For a sinusoidal input
with frequency 10 Hz, the maximum and the standard deviation
of the control error are reduced by a factor of approximately ten.

As future work, other model structures for the hysteresis non-
linearity will be considered. Further, accelerometer sensor data
will be utilized in an extension of the control scheme.
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